Widget Image
Widget Image
Widget Image
Fire is the second leading cause of accidents in wind turbines.

The importance of fire suppression in wind turbines

Wind power is an exciting emerging sector that needs those of us involved in fire safety to get on board. As electricity generation becomes more reliant on renewable energy, wind power is becoming increasingly important in the energy mix. As our reliance on wind turbines grows, keeping them fully operational and at reduced levels of risk is becoming more important, and as a result, so is safety management. There are over 340,000 wind turbines around the world; yet the vast majority of turbines have no fire suppression system installed.

The fires in wind turbines not only lead to a loss of business continuity and a negative impact on the company’s reputation but also, most importantly, are a critical safety issue. Possibly harmful debris can drift into the wind in the event of a fire and there is also a significant risk to human lives. When turbines are under construction, commissioning maintenance and repair, escape routes for operators are often long and vertical.

A recent report found that three out of six incidents studied involved a human presence in the nacelle*; hence, a fire becomes a safety concern. In 2013, a crew of four engineers died in Ooltgensplaat, Netherlands in a wind turbine fire. This devastating loss of life calls for improved review of fire safety to minimise the risk to engineers.

According to the BP Statistical Review of World Energy 2016, countries in the GCC region hold nearly a third of the world’s total oil reserves, and over a fifth of gas reserves. So it’s perhaps not surprising if the Middle East doesn’t leap to mind when you think of countries doing great things with wind power.

But that could all be set to change – and quickly. APICORP (Arab Petroleum Investments Corporation) expects Gulf countries to need to generate 40% more electricity over the next five years. There is a concern that if they don’t embrace and invest in a more diverse, clean energy mix for their own domestic consumption now, they will limit their capacity to export valuable hydrocarbon, crude and fuel, which would have a significant impact on the region’s economy.

Recognising this, all six GCC countries have announced plans to invest in renewables and achieve significant targets by 2030 to 2040.

With parts of Kuwait, Oman and Saudi Arabia’s Red Sea coast subject to relatively high wind speeds, IRENA (International Renewable Energy Agency) highlighted last year that 56% of the GCC’s surface area has significant potential for wind deployment. They suggest that covering just 1% of this area could result in a capacity of around 60GW.

With Vestas, the world’s largest wind turbine manufacturer, noting a clear increase in wind projects being tendered in the Middle East, energy companies will no doubt turn their attention to optimisation of wind farms and reducing any kind of disruption.

The second leading cause of that disruption in wind turbines – after blade failure – is fire1. With the average overall cost of a wind turbine fire being around $4.5m2, and with three out of six fire incidents involving a human presence in the nacelle3, fire suppression would seem a sensible consideration from both a financial and safety perspective.

The design of a wind turbine, which places the mechanical portion of the turbine nearly 300ft off the ground at the top in the nacelle, means there is no practical way to respond to a fire in these units.

Since 2011 there have been 36 large wind turbine fire incidents reported in the mainstream media, although the actual number is much higher, with many smaller, less visible fires going unreported. Most recently, in Wyoming in the US last September, a wind turbine blaze caused a wild fire that burned out nearly 1,600 acres.

Case study: preventing fire-related damage at a California wind farm

Location: Palm Springs

Owner: Whitewater Energy Corporation

Number of wind turbines: 6 x 1.5MW

Background: A previous fire cost more than $243,000 in damaged equipment and downtime, prompting WEC to install a fire suppression system

Fire suppression: Firetrace’s automatic fire suppression system was installed in all six turbine converter cabinets in late 2009

The issue: A fire started in a wind turbine converter cabinet

The solution: The Firetrace automatic fire suppression system, comprising unique linear pneumatic detection tubing routed throughout the equipment, activated immediately on detecting the fire. It released its suppression agent directly on the heat source to contain the fire and limit damage to the eruption point.

The result: No damage to the cabinet or internal components, other than the failed component.

Downtime: Firetrace was able to quickly deliver a replacement system, enabling the turbine to be up and running the next day. This was a considerable improvement on the average downtime following a wind turbine fire of approximately nine months4

Even a small fire can accelerate quickly in a nacelle that comprises highly flammable resin fibreglass. Internal insulation, which can become contaminated by oil deposits, further adds to the fuel load. Lightning strikes also pose a uniquely high risk due to both the turbines’ exposed locations and their height; turbines are now being built in excess of 450ft.

Fortunately, many owners and manufacturers are incorporating automatic fire detection and suppression systems to help protect the nacelle. There are a number available, but the most common solution provides component-level automatic systems that offer both fire detection and suppression in a single package. Designed to detect a small fire in or around a critical component, they dramatically improve the response time and reliability while reducing the size of the system required.

The presence of an automatic fire detection and suppression system such as Firetrace offers 24/7 reliability and unsupervised protection to quickly address a growing fire and limit its damage.

And yet, despite the availability of affordable fire suppression methods, thousands of wind turbines are still being installed without adequate fire protection, and entirely preventable wind turbine fires continue to occur.

There has, however, been increasing momentum over the past few years for legislature requiring fire suppression on new wind farms. A growing list of authorities in Germany, and a number of both local and state governments in the US, are acknowledging that fire suppression is a judicious step to safeguard assets in the event of a fire in a wind turbine. A piece of unique regulation in Canada has taken it a step further, enabling local authorities to insist that fire suppression is retrofitted to existing sites.

With the Gulf at the start of its wind power journey, we have the perfect opportunity to educate energy companies on the prudence of installing fire suppression systems and instil best practice measures from the beginning. Given the efforts in recent years to improve existing safety processes and systems across the region, we may even see the Middle East leap ahead of the curve to become global champions of designed-in fixed fire suppression and maintenance for wind turbines.

However, it is important to note that such fire extinguishing systems require maintenance to ensure they are fully operational and ready in event of a fire. ISO 14520-1:2015(E) assumes that these systems accidentally discharge and leak. 6.2.4.2 Contents indication: “Means shall be provided to indicate that each container is correctly charged.” Followed by “9.2.1.3 The storage container contents shall be checked at least every six months as follows. a) Liquefied gases: for halocarbon agents, if a container shows a loss of agent in quantity of more than 5 % or a loss of pressure (adjusted for temperature) of more than 10 %, it shall be refilled or replaced.”

Section 10.5.3.2.2. of the NFPA 850 states that the Maintenance and inspection of total flooding gaseous agent systems and interlocked equipment are critical. All systems at some time may be called upon to operate in an emergency situation and may help in saving life and property. It is for this reason that knowledge must be had that the system can operate to its full potential.

Are annual checks sufficient in risky environments?

What if the suppression systems that are installed in the turbines to protect life and infrastructure do not release on actuation? Gaseous extinguishing/suppression systems are installed to protect against special hazards in critical infrastructure as their key objective. They deliver the infrastructural resilience that wind turbines require. If it is a known fact that there is a long response time to wind turbine fires, then it is unacceptable that the dynamic suppression systems are left unattended 364 days a year.

Firetest solutions
Issue:
Fire suppression systems at risk of accidental discharge, which could affect the effectiveness of the overall fire protection system in the event of a fire.

Solution:
Permalevel® Multiplex, a fixed fire suppression monitoring system, designed for continuous contents verification

Result:
With guaranteed systems operations, adaptability for purpose, 24/7 remote access to the systems status, an uninterruptible power supply (UPS) and remote real-time monitoring, the Permalevel® offers the efficiency that is needed in a wind turbine.

A call for constant monitoring of wind turbines

A dynamic system needs monitoring. The reality is that gaseous systems are checked for contents annually because they are pressurised and anything that is dynamic offers risk of loss of contents, but this fails to deal with the probability of discharge or leakage for the 364 days per annum in the interim between certification checks. If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them. Inspection should include an evaluation that the extinguishing system continues to provide adequate protection for the risk.

Coupled to this is a complete lack of room integrity testing after the gaseous system has been installed. As buildings age or their internal use is changed leak sites develop. If the gas cannot be ‘held’ in the room on discharge during a fire event the probability of its suppression diminishes in direct proportion to the size of the leak sites. Room integrity tests are imperative for the determination of both the hold time and the peak pressure needed for successful fire suppression.

The level of leakage is carefully monitored in order to ensure the correct agent concentration is achieved; room integrity must be ‘tight’ enough to ensure sufficient retention time according to NFPA Standards or ISO 14520, yet remain ‘loose’ enough to prevent enclosure damage at discharge. The presence of undesired and unregulated leak sites reduces room integrity and will hence dramatically impact the hold time and peak pressure, placing room contents and potentially wall structures at risk.

It is accepted that in wind turbines vibration can loosen connections while dirt, dust, and temperature extremes are known to cause unwarranted discharge. Additionally, openings in the turbine housing significantly inhibit achieving the designated agent concentration. Devising a solution to overcome these challenges can add significantly to the weight in the turbine.

For regular inspection, there are solutions such as the Portalevel® MAX. This handheld ultrasonic liquid level indicator can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level.

Coltraco Ultrasonics provide smart Firetest® solutions that enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®.

For more information, go to www.coltraco.com and www.firetrace.com

References
* The cover housing that houses all of the generating components, including the generator, gearbox, drive train, and brake assembly
1 2014 report by Imperial College London, Edinburgh University and SP Technical Research Institute of Sweden, published in Fire Safety Science
2 Renewable Energy Loss Adjusters
3 SP Technical Research Institute of Sweden
4 2014 report by Imperial College London, Edinburgh University and SP Technical Research Institute of Sweden, published in Fire Safety Science
Article Written By
Scott Starr is Marketing Director at Firetrace International.

Scott Star

Dr Carl Stephen Patrick Hunter is CEO and Managing Director of Coltraco Ultrasonics.

Dr Carl Stephen Patrick Hunter

Share With:
Rate This Article
No Comments

Sorry, the comment form is closed at this time.

Subscribe to Gulf Fire today for FREE!

Choose a Printed or Digital subscription to have full access to our website content.

Subscribe here for FREE

To dismiss this message please login here